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Introduction

Computation is usually associated with man-made devices,
such as the ubiquitous digital computer or the lesser-known
analogue computer. However there is also a vast array of com-
putational devices to be found in living organisms in the form
of protein and genetic networks. When changes are sensed in
the state of their external and internal environments, biological
systems utilize signalling pathways made up of interacting pro-
teins to process the information, allowing them to coordinate
and integrate a response appropriate to the actual milieu.
One of the most common examples of motifs found in bio-

logical signalling networks is the reaction cycle formed by a
phosphorylating protein kinase and dephosphorylation phos-
phatase (Figure 1). Such cycles are commonly chained together

to form “cascades”, which are cross-linked with other cascades
to form a dense network of interacting chemical cycles. In eu-
karyotes, especially in higher organisms, these signalling net-
works can be quite large, comprising up to eighty or more ki-
nases and phosphatases.[1] The signalling networks receive a
variety of inputs, generating one or more outputs that range
from changing gene expression to modifying enzyme activities
in metabolic pathways. Understanding what these networks
“compute” is one of the most interesting questions in the

study of signalling networks. Unfortunately, the exact decision
making that occurs and how it is achieved is not well under-
stood. When disrupted, many of these networks can result in
malignancy in higher organisms, and thus their study has both
academic and heath-related importance.
There are less than a handful of signalling networks for

which we are confident that we understand the nature of the
computation, two examples are E. coli chemotaxis and the eu-
karyotic mitogen-activated protein kinase (MAPK) pathway.
The E. coli chemotaxis network is believed to include at least

three functional units: an actuator and error generator, a time-
delay unit and, most remarkable of all, a numerical integrator.[2]

Essentially the circuit acts as a simple but effective analogue
computer. The chemotaxis network enables E. coli to sample
the local nutrient conditions at intervals, allowing it to coordi-
nate movement up a nutrient gradient.[3] E. coli must employ
this sampling strategy because it is too small to detect concen-
tration gradients directly by differential sampling across its
length.
The MAPK pathway seems to perform different roles de-

pending on its context. In certain situations, MAPK is believed
to act as a switch, enabling the system to translate a continu-

Due to the variety and importance of roles performed by signal-
ling networks, understanding their function and evolution is of
great interest. Signalling networks allow organisms to process
and react to changes in their internal and external environment.
Current estimates suggest that two to three percent of all ge-
nomes code for proteins involved in signalling networks. The
study of signalling networks is hindered by the complexities of
the networks and difficulties in ascribing function to form. For ex-
ample, a very complex dense network might comprise eighty or
more densely connected proteins. In the majority of cases there is
very little understanding of how these networks process signals.
Unlike in electronics, where there is a broad practical and theo-

retical understanding of how to construct devices that can pro-
cess almost any kind of signal, in biological signalling networks
there is no equivalent theory. Part of the problem stems from the
fact that in most cases it is unknown what particular signal pro-
cessing circuits would look like in a biological form. This paper
describes the evolutionary methods used to generate networks
with particular signal- and computational-processing capabilities.
The techniques involved are described, and the approach is illus-
trated by evolving computational circuits such as multiplication,
radicals and logarithmic functions. The experiments also illustrate
the evolution of modularity within biochemical reaction net-
works.

Figure 1. The phosphorylation cycle: A commonly found network motif in
biological signal-processing pathways.
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ous graded signal into an on/off response.[4] In different situa-
tions, the MAPK may take on the role of a classic feedback am-
plifier or an oscillator.[5, 6]

Understanding the functioning of specific networks offers in-
sight into the roles and mechanisms of signalling networks in
general. Expanding on such understanding is the central goal
in the field of “Systems Biology”, perhaps more aptly called
“Molecular Physiology”. This goal has proven elusive, as often
only the structure of a network is known; in rarer cases, the
computational model of the network is known. Either way, the
extreme difficulty of ascribing function to networks limits un-
derstanding of the network’s signal processing capacity. In the
majority of cases it is unknown what control systems are em-
ployed and whether networks carry out simple or elaborate,
analogue or digital signal processing.
The similarity between biological signalling networks and

man-made devices is quite compelling, particularly when com-
pared to electronic networks. For example, the properties of a
phosphorylation cycle are remarkably similar to the response
exhibited by an electronic transistor.[5] Other motifs that have
electronic equivalents have been found in biological systems,
including bistable switches, oscillators and delay units.[7] How-
ever, there is no equivalent “circuit theory” of signalling net-
works. In Systems Biology there is no engineering handbook
for understanding signalling networks, whereas in electronics
there is an extensive body of theory and a large amount of
practical knowledge (however, see ref. [8]). Unfortunately, it is
unknown what many of the common signal processing ele-
ments found in electronic systems would look like in a biologi-
cal network. Therefore it is difficult to pinpoint the exact type
of signal processing that occurs in large biological signalling
networks. In addition, biological networks may contain novel
signal processing capabilities that lack counterparts in man-
made devices; this makes the discovery and classification of bi-
ological networks even more problematic.
Simple Boolean units constructed from chemical networks,

such as AND, OR and NOT gates, have been studied theoreti-
cally for a number of years.[9–13] It is known that chemical kinet-
ics can be used to create universal Turing machines.[14] In the
study of analogue-signal processing, Wolf and Arkin,[7] and
Tyson et al. ,[15] in particular have discussed a variety of ana-
logue motifs in biological networks, for example, the existence
of distinct modules such as feedback loops, oscillators,
switches, noise filters, amplifiers and memory elements (both
analogue and digital). It is suggested that these modules form
interacting building blocks capable of combining into hierar-
chies.[16] While interest in this field is clearly growing, it is still
at a very early age of development.

Computational Systems Utilizing Biological
Methods

Just as biological systems use computation, humans have
been building computational devices that use biologically in-
spired processes. We are proposing to use evolutionary tech-
niques[17] to build biochemical networks with particular signal-
processing capabilities. There are three general types of evolu-

tionary algorithm: genetic algorithms (GA),[18] evolutionary
strategies (ES),[19] and evolutionary programming (EP).[20] All
these techniques are generally based on the evolutionary pro-
cesses of selection, crossover, and mutation. Kacser and
Beeby[21] may have been one of the first to employ an evolu-
tionary strategy to evolve networks. They used an evolutionary
approach to try to reconstruct the general course of early
enzyme evolution. Bray and Lay[22] applied a GA method to the
problem of optimizing reaction rates in a model for signal
transduction. Gilman and Ross[23] studied the selection of a reg-
ulatory structure that directs flux in a simple metabolic model
using a GA. Genetic algorithms have also been used to deter-
mine reaction mechanisms and reaction rates for a network in-
volving the Ce-catalyzed minimal bromate system.[24,25] In more
recent work to identify bistable switches and oscillators in
gene networks, FranLois and Hakim utilized evolutionary pro-
cedures.[26] They claim to evolve networks from basic interac-
tions between genes and proteins. The fitness of the network
was defined by its dynamics, either bistability or oscillatory be-
haviour. Shin and Iba used the S formalism to evolve gene net-
works,[27] and evolutionary algorithms have also been used to
design a glycolysis network that interacts with an external ATP-
consuming reaction.[28] It was found in this work that evolu-
tionary algorithms are very useful in determining the optimal
stoichiometry of metabolic pathways. Efforts to define the ro-
bustness of networks against changes in their stoichiometry
have also been made, and it was found that populations
evolve towards clusters of networks that perform a common
function.[29]

Probably the most prolific and successful application of evo-
lutionary algorithms in designing devices has been performed
by Koza,[30] who has been highly successful in using genetic
programming to evolve electronic circuits, such as filters and
analogue computational units, to name but two. Koza has also
done some preliminary investigations into using genetic pro-
gramming to study metabolic pathways.[31] Following Koza, we
propose to use an evolutionary approach to evolve signal-
processing biochemical reaction networks able to perform
mathematical calculations.

Design by Evolution

Why use an evolutionary approach to solve a problem? An
evolutionary approach is very efficient in situations in which
many possible solutions exist and it is not necessary to find
one perfect solution. This will be illustrated by a brief discus-
sion of search spaces and how evolutionary techniques isolate
workable solutions.
The search space is the sum of all possible unique networks

that must be evaluated. Allowing for five species nodes where
0, 1, 2, …, 10 reactions can exist of one of four types (uni–uni,
uni–bi, bi–uni, or bi–bi), the number of unique topologies
would be approximately 1022. Each of the 1022 topologies must
be considered as a possible solution. Testing each topology in
order would be like sitting next to the haystack and plucking
the next thing from the pile hoping it might be a needle. This
is very efficient if the first network is the best, but very ineffi-
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cient if the best network happens to be the
10000000000000000000000th. When the rate constants are
considered part of the search space, each topology contains a
near infinite search space.
Using an evolutionary approach restructures the search

space and changes the way it is explored. In the search space,
any given unique network is surrounded by similar unique net-
works. You are randomly dropped onto a network, and any
single mutation moves you to an adjacent network. If you
move blindly from one network to a worse one, you abandon
your search in that area. If you move to a better network, you
keep moving blindly in that general direction. This allows for
movement towards a better solution without having to exam-
ine every solution.
Finding the single perfect solution by using evolutionary

techniques is never assured. The solution depends on the
starting conditions and the chance mutations that occur. The
program may end up stuck in a local optimum, unable to
make a large enough jump to escape to a new region that
possibly contains a better solution. The solution found might
be a workable solution, but it is probably one of many and not
necessarily the best.
The program called Lakhesis was developed in order to find

networks able to perform mathematical calculations by using
evolutionary techniques. Lakhesis was created in two steps:
the creation of a program able to accurately model and simu-
late a network of chemical reactions, and then the extension
of the program to evolve the networks.

Modelling and Simulating Networks of
Chemical Reactions

With Lakhesis, the reaction networks are modelled such that
the molecular species are nodes with an attribute for concen-
tration, and the reactions between the species are connections
with attributes for rate constants and reaction types. All attri-
butes in Lakhesis are numeric values, following the evolution-
ary-strategy approach. The networks have external input and
output nodes that serve as sources and sinks in the system,
enabling the networks to reach a stable steady state. Networks
that go to thermodynamic equilibrium are not of interest. The
external input node also serves as the signal input to the
system and can be changed during a simulation. The external
output nodes are always fixed. The internal floating nodes of
the network serve as the readout nodes, any one of which
might be capable of computing the desired objective function.
An example of a typical random network is shown in Figure 2.
To compute the steady state of a network, the input and

output rates for each node are computed, and the change in
concentration is calculated by subtracting the total output rate
from the total input rate for that node. This process is carried
out for each floating node in the network to yield a set of ordi-
nary differential equations. The differential equations are
solved by using a 4th-order Runge–Kutta solver with a step
size of 0.05. The solutions to the differential equations describe
the changes in node concentration of the network in time.

Viable networks are determined by their node’s ability to
sustain a steady state, in which concentrations settle to a con-
stant value. If the change in concentration for a particular
node is less than some pre-prescribed threshold value, the
node is marked as temporarily being in a steady state. If it re-
mains in a steady state over successive iterations, the node is
marked as having a continuing steady state. If the network
failed to reach steady state on any of its nodes at the end of
an input-value run, it is immediately removed from the popula-
tion.
To test the accuracy of modelling and simulating, network-

simulation results from Lakhesis were compared to those from
Jarnac 2.0.[32] The comparison verified that Lakhesis was indeed
accurately simulating the reaction networks.

Evolving Networks of Reactions

For evolution to occur, it is necessary that genotypic variation
exists among individuals in the population and that a selection
process acts upon this variation to eliminate the individuals
with poor phenotypes. Genotypical variation is maintained
through stochastic processes, such as mutation or crossover
during reproduction. In Lakhesis, selection is a deterministic
process in which only the best networks are selected for repro-
duction. The cycle of creating variable offspring and then se-
lecting the best of the offspring is repeated for many genera-
tions, as shown in Figure 3. This repetition of mutation and se-
lection gently pushes the survivors towards an optimal level of
adaptation.

A) Creating a genetically diverse initial population

As the raw material for evolution is genetic variability, it is nec-
essary to have as many genetically diverse networks as possi-
ble in each generation. For the initial generation, the popula-
tion size is ten times larger than subsequent generations in
order to create a relatively large amount of initial diversity. The
amount of genetic variability is determined by the number of
unique topologies in the population, where unique topologies
have different combinations of numbers of connections per
node, different types of connections and the rate constants as-
sociated with each connection. To create this diversity, the net-
works in the initial population are created by assigning them
random connections and rate constants.

Figure 2. A typical network constructed during the first generation of the evolu-
tion software. The concentration of node 0 is considered the input to the net-
work (x). The concentration of node 2 is the output of the function f(x), as
measured after the system reaches steady state.
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Every network consists of a fixed number of nodes and a
maximum number of connections between the nodes, as set
in the program’s configuration. The number of connections for
a given node is randomly generated at the time the node is
created, and can be from zero to the maximum number of
connections specified. Then each connection must be assigned
a type (uni–uni, uni–bi, bi–uni, bi–bi) and a rate constant as
shown in Figure 4. This procedure for generating connections
is repeated for every connection in the network. The bimolecu-
lar reaction types are essential as they contribute nonlinear be-
haviour to the networks.
When the process is completed, the network has a topology

that describes a set of differential equations representing the
genotype of a network. If no other nodes connect to a given

node, then it will not be involved in the network. If a node has
connections coming into it but no connections going out, the
node will serve as a waste node for the network and will not
be assigned a differential equation.

B) Evaluating the fitness of a network

To evaluate the fitness of a network, the network’s genotype in
the form of a set of ordinary differential equations is translated
to a phenotype by computing the steady-state solution with a
4th-order Runge–Kutta method. The fitness of a network is
based on the amount it deviates from the expected value of
the objective function f(x). An input value x is set for the input
node, and the time course behaviour of the network is evaluat-
ed. If the system cannot reach a steady state, it is immediately
removed from the population. If the system reaches a steady
state, the deviation of each node is calculated by subtracting
the output of the node from the exact value of f(x). The input
value x is set to a new value, and the test is repeated. For ex-
ample, the training inputs for evolving a square-root network
might be 21, 22, 23, …, 2n, where n ranges from 6 to 11.
Each node receives a total-deviation score, which is the sum

of the deviation scores that particular node received for each
input value. The node that has maintained a steady state and
has the least amount of deviation is marked as the best node
in the network. The best node is considered the output func-
tion (f(x)) for the system, and the best node’s total deviation is
the fitness for that network as shown in Figure 5. The lower
the deviation score, the higher the fitness of the network.

C) In silico selection: Survival of the least deviant

Before reproduction occurs, selection must remove the least-fit
networks from the population. Lakhesis uses a selection tech-
nique called elitism, in which the networks with the best fit-
ness scores are always guaranteed survival.[18] The number of

Figure 3. Diagram of the in silico evolution A) Genetic Diversity : An initial pop-
ulation is created by generating random networks. B) Evaluate Fitness: The
output of the network is the network’s phenotype, which is compared to the ex-
pected output in order to calculate a fitness score for the network. C) Selection:
Networks with poor fitness scores are removed from the population. D) Repro-
duction: The surviving networks are cloned or bred, and the offspring are ran-
domly mutated to maintain genetic variability. Evaluation of fitness, selection,
and reproduction are repeated for each generation.

Figure 4. To create a random connection, first a connection type is randomly
selected from one of the above types for node A. The other nodes, marked as
X, necessary for the connection type are randomly selected from the existing
network. Finally, a random number is generated for the rate constant k.

Figure 5. Calculating deviation for a network. The network is simulated for
several different inputs, and the readouts measured. All the deviation scores
are summed for each of the nodes. Each node is tested, and the node with the
lowest total deviation score is the output for the network.

1426 7 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chembiochem.org ChemBioChem 2004, 5, 1423 – 1431

A. Deckard and H. M. Sauro

www.chembiochem.org


best fitness scores to select for the next generation is specified
in the configuration of the program. For example, the ten
lowest deviation scores are found in the population, and any
networks that have deviation scores that are worse are re-
moved from the population. Where a neutral mutation occurs
and causes several networks to have the same deviation score
and the deviation score is not selected for elimination, all net-
works with that phenotype remain in the population. Because
of this, more networks usually remain in the population after
selection than the number of top scores.
Even though Lakhesis was designed to simulate evolution,

the “species” that exist in the program are not subject to the
same physical and environmental constraints as their biological
counterparts. For example, in Lakhesis no genetic drift occurs
because individuals are never randomly removed from the
population. Once a good solution appears it is never lost until
it is replaced by a better solution. To make this more comfort-
able for the biologically inclined, the solution that is copied
into the next generation can be thought of as an exact clone
of the fit parent. Therefore any fluctuations in the frequencies
of unique genotypes between generations are due wholly to
natural selection and not to any stochastic processes.[33]

As the individuals in Lakhesis are haploid agamospecies,
their evolution follows a slightly different path from that with
sexual diploid species. Genetic variability is only kept through
continuous mutations, and speciation can only occur at the
death of intermediate clones. For these reasons, the rate of
mutation and the strictness of selection are intentionally high.
An exact clone of a highly fit individual is guaranteed in the
next generation; this circumvents the concern that too high an
error rate will lead to loss of adaptation.[33]

D) Asexual reproduction and mutations

After the unfit networks have been removed from the popula-
tion, the survivors have offspring by either asexual or sexual re-
production. Currently Lakhesis uses asexual reproduction as it
proved to be more efficient than sexual reproduction for small-
er networks. Each of the remaining networks has enough off-
spring to bring the population back to capacity, so few surviv-
ing networks will have many offspring. Surviving networks
remain in the population to compete in the next generation.
Lakhesis uses a base mutation rate that sets a range of mu-

tation rates for each offspring. For example, the first offspring
of a network will have a 1=3 base mutation rate, and the next
1=4, and the next 1=5. This allows for a continuum of similarity
between the offspring and the parent, in which the highly sim-
ilar offspring may be a refinement of the parent’s solution and
the highly mutated offspring might find novel and possibly
better solutions. In addition to the base mutation rates, muta-
tions of different parts of the connections occur at differing
probabilities. The probability of the mutation type is inversely
proportional to the amount of disruption it will cause, as
shown in Figure 6. Rate-constant mutations are the smallest
possible change in the genotype and generally cause the
smallest variation in the phenotype, following the principle of
strong causality.[19a] These mutations occur most frequently to

maximize the exploitation of the given topology’s associated
search space. The other mutations are very disruptive as they
change the topology of the network, allowing for exploration
of the search space associated with different topologies.
The product of the base mutation rate for a given offspring

and the rate for a given mutation type determines the proba-
bility that a given mutation type will occur. For example, given
a range of base mutation rates of 1=3 to

1=5 and mutation rates
for rate constants of 1=2, connections types of

1=4 and adding/
removing connections of 1=6 :
* For the offspring with the highest mutation rate, each rate

constant has a 1=6 chance of mutating, each connection has
a 1=8 chance of mutating and, for each connection, there is
a 1=12 chance of a connection being added or removed.

* For offspring with the lowest mutation rate, each rate con-
stant has a 1=15 chance of mutating, each connection has a
1=20 chance of mutating and, for each connection, there is a
1=30 chance of a connection being added or removed.

Results

After much testing and refinement, Lakhesis has evolved net-
works capable of computing multiplication by constants,
square roots, cube roots and natural logarithms. Multiplication
by a constant is a trivial computation for a reaction network,
and was only employed in the initial stages to test the soft-
ware. Networks capable of computing the square root proved
to be relatively easy to evolve, with more than 75% of total
runs returning a viable network. Networks of the cube root
and log variety were much more difficult to evolve; here less
than 10% of attempted runs returned functioning networks.
Figure 7 shows the step-like changes in fitness as evolution
proceeds, which are typical of genetic algorithms. Each step
represents a new and better solution appearing in the popula-
tion.

Square-root networks

As mentioned previously, it was very common to evolve a net-
work able to compute the square root. In fact an entire family
of networks was generated. A sample of these networks is il-
lustrated in Figure 8.

Figure 6. Types of mutations in descending order of frequency. A) Rate-constant
mutation, B) Reaction-type change, C) Reaction deletion or addition. Rate-con-
stant mutations occur most frequently, as they are the least disruptive. Reaction
deletion or addition occurs least frequently, as they are the most disruptive to
the functioning of the network.
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The networks evolved by Lakhesis are complex and highly
connected. In all cases, evolved networks contained redundant
connections, either reactions that carried no flux, reactions
that consumed and produced the same node or reactions that
connected the same nodes but in multiple ways. In order to
study the networks more easily, all redundant connections
were removed at the final generation. The examples shown in
Figure 8 are examples of networks after redundant connec-
tions have been removed. The pruned square-root networks
are concise and in many cases have an appealing symmetry.
Network A shown in Figure 9 illustrates a typical network as it
emerges from a simulation; B shows the same network but
with redundant connections removed.
The network shown in Figure 9 is one of the most common

motifs to evolve. By solving the steady-state solution from the
differential equations for this system, it is easily shown that it
is capable of computing the square root exactly.

Differential equations and steady-state solution for the
system shown in Figure 9B:

dn3
dt

¼ k1n1�k2n3n4

dn4
dt

¼ k3n3�k4n4

n3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k3n1
k2k4

r

So long as k1k3=k2k4, n3 is exactly the square root of the input
node, n1.

Analysis of the network’s evo-
lution shows that the square-
root module is a derived charac-
teristic, as shown in Figure 10.
Network A occurred in genera-
tion 185 and only has the first
part of the module, 1+4!4,
with two separate uni connec-
tions cycling between nodes 1
and 4. Through chance muta-
tions, this ancestral network is
eventually replaced by a net-
work with a square-root
module, shown as the final win-
ning network B in generation
499. While both topologies are
capable of computing a perfect
square root, chance bestowed

Figure 7. Comparison of decreasing deviation scores in three selected runs
evolving a network capable of computing a square root. The scores plotted are
the lowest deviation score found in the given generation. Once the deviation
score falls below 1, it indicates that a viable topology has been found. In most
runs, a viable topology is found within the first 50 generations.

Figure 8. Evolved square root networks. Most of these networks are able to compute the square root exactly. x desig-
nates the input node, and f(x) the readout node. Redundant connections have been removed or combined. In several
networks, it may appear that mass conservation has been violated; however, there are implied waste nodes not indi-
cated in the figures. The presence or absence of waste nodes does not affect the computation.

Figure 9. Network A) illustrates a typical network as it emerges from an evolu-
tion run. Many connections are redundant, and only a core set of reactions
contributes to the phenotype. Network B) illustrates the same network but with
redundant connections removed and rate constants adjusted. The numbers
next to the reactions are values for the rate constants. Network B) is able to
compute the square root exactly.
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rate constants on the square-root lineage that yielded a more
accurate solution, allowing them to replace their non-square-
root competitors. In this particular example, several equally
viable topologies may have popped into existence between
generations 185 and 499, only to suffer extinction after being
repeatedly dealt losing combinations of rate constants. This
serves as a reminder that evolutionary computation cannot be
depended upon to return the single best solution, and biologi-
cal evolution can only seize upon the opportunities afforded
by chance.
An interesting variation on the square root circuit shown in

Figure 9b is given in Figure 11. In this network, an additional
reaction exists between nodes 1 and 2. This network will solve
a second-order polynomial equation in which the coefficients
of the quadratic equation are functions of the rate constants
and input node.

Cube-root networks

More interesting were attempts to evolve a network capable
of finding the cube-root of an input node. These proved to be
much more difficult to evolve and only roughly one in ten of
all simulations yielded a successful cube-root network. The un-

successful networks were mainly networks that could replicate
the training data but could not generalize beyond the training
set. Figure 12 illustrates two cube-root networks.

While it is interesting that the cube-root networks appear
quite different, the differences become striking when the net-
works are examined in detail. While it was quite simple to
solve the steady-state equations and prove unambiguously
that the square-root networks computed exactly, the same
could not be done for the cube-root networks. Even though
attempts to prove by hand that these networks could com-
pute cube roots exactly were unsuccessful, computer simula-
tions indicate that the networks can solve a cubic equation
very accurately over at least ten orders of magnitude.
As the steady-state solutions could not be calculated by

hand, Mathematica 5 was used. For network A in Figure 12,
Mathematica was able to find a closed solution, but it was
over ten pages of dense algebra. Network B was more amena-
ble to algebraic analysis, and a solution derived by Mathemati-
ca was reduced to a simple quintic polynomial after some sim-
plification. This result suggested to us that the second network
was not in fact solving the cube root exactly but might have
been approximating the solution using a fifth order Taylor ex-
pansion.
The first network (12A) is of much more interest and is re-

drawn in Figure 13 to highlight a particular part in grey. Many
readers will immediately recognize this motif to be the quad-
ratic-equation solver shown in Figure 11.

Figure 10. Comparison of an ancestral network A, found in generation 185, to
the final network B, found in generation 499. Both networks compute the
square root exactly for all points tested after their rate constants have been ad-
justed. In both networks, mass conservation is achieved by implied loss from re-
actions k2 and k3. In network B, there is additional conservation from an explicit
reaction given by k5. Note the root-finding module between nodes one and
four in network B.

Figure 11. The quadratic module solves the equation ax2 + bx + c=0. The
coefficients, a, b, and c are formed from combinations of the rate constants
and the input species, n0.

Figure 12. Example cube root networks evolved by Lakhesis. Cube-root
networks are more complex and considerably more difficult to analyze than
square-root networks. The node marked with x is the input node and the node
marked with f(x) is the output, as measured after the system reaches a steady
state.
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It seems that this is an example of functional modularity
that arose during the evolution of the network. While this
motif is critical to the functioning of the network, it is un-
known whether the motif is actually operating as a quadratic-
equation solver in this cube-root network. Especially intriguing
is the existence of a 16th century algorithm by Cardano for
computing cube roots, that depends on solving a quadratic.[34]

Attempts to evolve networks capable of computing natural
logarithms were only partially successful. The networks that
evolved could not compute natural logarithms outside the
given training set. This may be because log is defined as a
series expansion, and the networks simply reproduced the
series only as far as it matched the training set.

Discussion

This paper presents some preliminary results on the artificial
evolution of biochemical networks capable of performing com-
putations. The program Lakhesis was able to accurately simu-
late and evolve models of chemical networks, and was used to
show that an evolutionary strategy is capable of evolving net-
works that can perform relatively complex computations, such
as square roots and cube roots. In the case of the evolution of
square-root networks, an entire family of networks that could
perform the computation was discovered. More interesting
was the evolution of networks capable of solving cubic equa-
tions. One could imagine that solving square or square-root
problems should be relatively straightforward since squaring is
already available in the form of bimolecular reactions; this was
illustrated by the ease of evolving square-root networks. How-
ever, solving cube roots is more problematic, as illustrated by
the much greater difficulty in evolving cube-root networks.
What was interesting and rather surprising was the appear-

ance of a modular structure in one of the cube-root networks,
where the module was capable of solving quadratic equations.
This quadratic module is especially interesting in light of a
16th century algorithm by Cardano for solving cubic equations
that uses the solution to a quadratic as part of the solution
process.[34] It is currently unknown whether the network has
stumbled upon the same 16th century algorithm, but the evi-
dence is very suggestive.
Since there is modularity in the artificially evolved networks,

it might be tempting to suggest combining the modules to

generate new functionality. For example, a simple idea might
be to put two square-root circuits one after the other so that
the result of the first feeds into the second. The net effect of
this would be a network capable of computing roots to the
power of four. However, such a process is not so simple and
would not actually work. The problem is well known in elec-
tronics and involves the notion of impedance. Take, for exam-
ple, the process of connecting a speaker to an amplifier. The
speaker, termed the load, will draw current from the amplifier.
This in turn can affect the output voltage on the amplifier,
which, if not curtailed, will ultimately cause the amplifier’s per-
formance to deteriorate and lead to distortion in the speaker
output. Electronic engineers take great pains to make sure that
different modules match so that they do not interfere with
each other in this manner. In the example of the amplifier and
speaker, the solution is to add negative feedback from the
output of the amplifier to its input; this stabilizes the output
voltage as the load draws current. In the case of our simple
root-four solver, we are confronted with exactly this same
problem. If one square-root circuit is attached to another, the
second circuit (the load), will draw mass (current) from the first
circuit. This will cause changes in the output species level (volt-
age) that will ultimately cause further changes in the internal
dynamics of the network. As a result, the computational per-
formance of the network will deteriorate and result in gross
computational errors. Nature may cope with this by matching
one signalling module to another, just as electronic engineers
must. For example, such matching may exist in the MAPK
pathway, where it is known that negative feedback occurs
across the MAPK stack.[5] While it is generally unknown what
the matching circuits might look like, we believe they must be
present in order for the signalling networks to function effec-
tively.
The preliminary results have shown it is possible to evolve

networks with a desired functionality and provided a proof of
concept that will allow us to develop this work further. There
are several areas of study that are of particular interest and
that we intend to pursue. The first area is the systematic inves-
tigation of how the various mutations rates and mutation
types affect the performance of the evolution. Another is to in-
crease the flexibility of the networks by allowing variable num-
bers of nodes. In addition, since the goal is to build a library of
different signal-processing elements, it is highly desirable to
evolve not just basic mathematical functions but a variety of
networks. These networks would be of biological interest as
they can be compared to real signalling networks.
In the long term, we are very interested in exploring the

evolution of modularity and intend to devise a more biologi-
cally inspired genome in order to implement robust crossover.
The initial version of Lakhesis attempted to use crossover ;
however, crossover invariably resulted in offspring that were
no fitter than their parents. Part of the problem might have
been the crossing of heterologous networks rather than ho-
mologous networks; however, this is an active area of re-
search.
Finally, one observation stood out above all : the evolved

networks look nothing like real biological signalling networks.

Figure 13. Cubic solver network from Figure 12A, redrawn to highlight the
modular structure. The grey panel highlights the quadratic module present in
the cube-root network.
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Whereas biological signalling networks are composed of re-
peated cyclic motifs, the artificially evolved networks lacked
this kind of architecture. We believe this is due to a number of
factors, one of which is the mode by which biological systems
evolve. One of the main methods by which biological networks
evolve is through gene duplication. For example, many of the
kinases and phosphates that are found in biological signalling
networks can be traced to common ancestors. It is presumed
that these ancestral genes duplicated and diverged and were
utilized to enlarge the original network. Therefore instead of
evolving completely new architectures, gene duplication, par-
ticularly module duplication, allows networks to grow without
changing the basic architecture and results in similar motifs
being appended to an existing network. Our simulations had
no such constraints ; this allowed the networks to take on any
pattern, and they were thus highly variable in architecture. We
intend to look seriously at gene duplication as a means to
evolve artificial networks.

Computational Methods

The software (called Lakhesis) used to carry out the evolutionary
simulations was developed by using VB.NET. The program was con-
figured to run up to 500 generations of 500 networks. For the
Runge–Kutta algorithm, a time step of 0.05 was used, and the reac-
tions were simulated for 400 time points or until steady state was
reached. In the initial stages of development, output runs from
Lakhesis were compared to output from Jarnac 2.0[32] in order to
verify the accuracy of the solutions. In addition, all final networks
and examples shown in this paper were tested in Jarnac 2.0 to
verify their accuracy.

Typical runs lasted from twenty minutes to a few hours for the
more demanding objective functions. All simulations were run on
a 1.67 GHz machine with Windows XP. The software is freely availa-
ble for download from http://www.sys-bio.org/research/lakhe-
sis.htm.
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